On the Right Track
Installation Guide
General Introduction
Introduction...1
Local Building Codes..1
Tools Required...1
Additional Assistance..1

Parts Glossary
Components...2
Track..5

Installation - Ceiling
Please select ceiling type and proceed to page 14
Installing into ACT 15/16” Exposed Grid.......................7
Installing into ACT 9/16” Exposed Grid
with Recessed Tiles..8
Installing into Traditional Cubicle Curtain Track.............9
Installing into Gypsum Board Ceilings............................10
Installing into Plywood Ceilings......................................11
Installing into Concrete or Masonry Ceilings.................12
Installing into a Wall/Soffit...13

Installation - Components
Parts Assembly...14
Connecting the Track Connector.................................15
Connecting the Hanger & Track Connector..................16
Connecting the End Cap...17
Connecting the End Wall Plate......................................18
Installing Rail Drops...19
Installing Ceiling Blocking...20

Appendix
Graphical Track Layout...21
Graphical Track Layout with Drops..............................22
Graphical Ceiling Installation.......................................23
Installation and Building Code for Concrete Anchor......25

Maintenance...33
Introduction

On The Right Track’s worldwide patented cubicle curtain system includes a state-of-the-art track system that will give you years of ageless beauty and carefree enjoyment.

The following illustrated instructions have been provided to help you understand and take advantage of various scenarios and their appropriate installation techniques. Following these instructions along with good building practices will deliver the highest quality installation. Failure to follow these instructions also risks voiding the OTRT warranty.

Local Building Codes

Please follow all building codes and good construction practices when installing the curtain track. In addition to local codes, be sure to follow the instructions in this guide. Failure to do so may void your OTRT warranty.

Tools required

- Rubber mallet
- Phillips screwdriver
- Chop Saw with a non-ferrous aluminum blade or Hand Saw
- File
- Laser Level
- Measuring Tape
- TE-CX 1/4” x 6” Hammer drill bit (for concrete anchors only)
- HILTI 7/16” Drive Socket (for concrete anchors only)

Additional Assistance

For additional assistance, be sure to view our installation videos at: www.ontherighttrack.com/installers-resources

Patent No.: US D669, 721S; 5,186,232; 6,494,248; 6,935,402; 7,296,609
CN 100384356C; UK 2,458,075 and other US/int'l patents pending.
Please Note: some earlier versions have 4 screw holes. ONLY 2 SCREWS ARE REQUIRED. One on each side diagonally

Part # OPTS-B02 Hard Ceiling Mounting Plate

Part # OPTS-C02 End Wall Plate

Part # OPTS-02-S Swivel Wall Plate

Part # OPTS-C02 End Wall Plate

Part # OPTS-D02 Hanger & Tube Connector

Part # OPTS-F02 Track Connector

Part # OPTS-G02 Hanger & Track Connector

Part # OPTS-J02 Extensible Square Tube

Please Note: some earlier versions have 4 screw holes. ONLY 2 SCREWS ARE REQUIRED. One on each side
Part # OPTS-J02-SB
Support Bracket for Drops

Part # OPTS-P02
Ceiling Vertical Mount Plate

Part # OPTS-S02
Swivel Clip With Drop
Ceiling Grid Mounting Plate

Part # OPTS-SP03

Part # OPTS-S102
5/32” x 8.2mm screw

Part # OPTS-S302
5/32” x 13mm self tap screw

Part # OPTS-S402
5/32” x 11/4” mount screw

Part # OPTS-S602
5/32” x 16mm screw
Part # OPTS-S802-CA
1/6 x 1-1/2 Self Tapping Screw for CA

Part # OPTS-S802-W
1/4 x 1 1/2" Anchor

Part # OPTS-AN-C
1/4" x 2 5/8" Anchor for Concrete and Masonry

Part # OPTS-S902-1
(5/32 x 1" screw)

Part # OPTS-T02
Track Adapter

Part # OPTS-UO2
Curtain Stopper

Part # OPTS-W02
Ceiling Blocking
STRAIGHT TRACK

Part # OPTS-H802
180° 8 Ft Track

Part # OPTS-H502
180° 5 Ft Track

Part # OPTS-H402
180° 4 Ft Track

Part # OPTS-H302
180° 3 Ft Track
Part # OPTS-K102
90° 1 Ft Radius Track

Part # OPTS-K1R02
90° Reversed 1 Ft Radius Track

Part # OPTS-K202
90° 2 Ft Radius Track

Part # OPTS-K2R02
90° Reversed 2 Ft Radius Track

Part # OPTS K402
90° 4 Ft Radius Track

Part # OPTS-K402-10
4 Ft Radius Track (80% of semi-circle)

Part # OPTS-K5R02
90° Reversed 5 Ft Radius Track

Part # OPTS-L102
135° 1 Ft Radius Track

Part # OPTS-L1R02
135° Reversed 1 Ft Radius Track

Part # OPTS-L202
135° 2 Ft Radius Track

Part # OPTS-L2R02
135° Reversed 2 Ft Radius Track
Installing Into ACT 15/16th Exposed Grid

Directions:
1. The Drop Ceiling Grid Mount is a two piece mount. The center of the mount can be positioned and locked in place prior to attaching to drop ceiling grid work.
2. The center of the mount can be placed in one of eight positions to accommodate installation needs, and align correctly.
3. Secure a Drop Ceiling Mount piece (part# OPTS-S02) to the ACT grid using 2 pieces of OPTS-S902-1 screws.
4. If using drops, use 2 pieces of OPTS-S902-1 screws into a Ceiling Vertical Hanger Mount Plate (part# OPTS-P02)
 - If the drop is greater than 12”, also attach a Support Bracket (part# OPTS-J02-SB) from the drop (part# OPTS-J02) to the ceiling.

Notes:
- The ceiling mount should be 6” away from the wall and then installed every 24”.
- If this installation is in California and you are using drops, the maximum drop distance allowed is 24”.
- **ONCE COMPLETE, PLEASE GO TO PAGE 14.**
INSTALLING INTO ACT 9/16” EXPOSED GRID WITH RECESSED TILES

Directions:
1. The Drop Ceiling Grid Mount is a two piece mount. The center of the mount can be positioned and locked in place prior to attaching it to grid work.
2. Line up the hanger slot with the screw holes of the piece.
3. Secure a Drop Ceiling Mount piece (part# OPTS-S02) to the ACT grid using two OPTS-S902-1 screws and placing 2 spacers (part# OPTS-SP03) underneath each piece.
4. If using drops, use 2 pieces of OPTS-S902-1 screws into a Ceiling Vertical Hanger Mount Plate (part# OPTS-P03)
 • If the drop is greater than 12”, also attach a Support Bracket (part# OPTS-J02-SB) from the drop (part# OPTS-J02) to the ceiling.

Notes:
• Using spacers will allow the Drop Ceiling Grid Mount to be installed without interfering with the recessed tiles.
• The ceiling mount should be 6” away from the wall and then installed every 24”.
• If this installation is in California and you are using drops, the maximum drop distance allowed is 24”.
• ONCE COMPLETE, PLEASE GO TO PAGE 14.
INSTALLING INTO TRADITIONAL CUBICLE CURTAIN TRACK

Directions:
1. Insert the Track Adapter (part# OPTS-T02) into pre-installed traditional track.
2. Secure the Drop Ceiling Grid Mount (part# OPTS-S02) to the Track Adapter by using two OPTS-S602 screws.
3. If using drops, use 2 pieces of OPTS-S602 screws into a Ceiling Vertical Hanger Mount Plate (part# OPTS-P02) and Track Adapter (part# OPTS-T02).

Notes:
- The ceiling mount should be 6” away from the wall and the installed every 24”.
- If this installation is in California, you will need to also install an OPTS-S602-CA screw through one of the open holes on the Track Adapter (part# OPTS-T02) and all the way through both the traditional track and ceiling above it.
- If this installation is in California and you are also using drops, the maximum drop distance allowed is 24”.
- ONCE COMPLETE, PLEASE GO TO PAGE 14.
Directions:
1. Please check local city and state regulations regarding the installation into gypsum board ceilings before proceeding.
2. Attach a Hard Ceiling Mount Plate (part# OPTS-B02) to the ceiling using 4 pieces of OPTS-S802-W anchors.
3. If using drops, use 3 pieces of OPTS-S802-W anchors into a Ceiling Vertical Hanger Mount Plate (part# OPTS-P02)
 - If the drop is greater than 12”, also attach a Support Bracket (part# OPTS-J02-SB) from the drop (part# OPTS-J02) to the ceiling.

Notes:
- The anchors should be installed using a very low torque setting on your drill or with an ordinary Phillips screwdriver. DO NOT OVER-TORQUE SCREWS.
- A laser level is very useful when laying out locations for the hard ceiling mount plates.
- The ceiling mount should be 6” away from the wall and then installed every 24”.
- If this installation is in California and you are using drops, the maximum drop distance allowed is 24”.
- ONCE COMPLETE PLEASE GO TO PAGE 14.
Directions:
1. Attach a Hard Ceiling Mounting Plate (part# OPTS-B02) to the ceiling using 2 pieces of OPTS-S802-W anchors.
2. If using drops, use 3 pieces of OPTS-S802-W anchors into a Ceiling Vertical Hanger Mount Plate (part# OPTS-P02).
 • If the drop is greater than 12”, also attach a Support Bracket (part# OPTS-J02-SB) from the drop (part# OPTS-J02) to the ceiling.

Notes:
• The anchors should be installed using a very low torque setting on your drill or with an ordinary Phillips screwdriver. DO NOT OVER-TORQUE SCREWS.
• A laser level is very useful when laying out locations for the hard ceiling mount plates.
• The ceiling mount should be 6” away from the wall and then installed every 24”.
• If this installation is based in California, the maximum drop distance allowed when installed into plywood substrate is 20”.
• ONCE COMPLETE, PLEASE GO TO PAGE 14.
Directions:
1. Attach a Hard Ceiling Mounting Place (part# OPTS-B02-CA) to the ceiling using 2 pieces of OPTS-AN-C anchors.
 a. In order to stay within code, please refer to the Appendix on page 25 for detailed anchor installation instructions and building code information.
2. If using drops, use 1 piece of OPTS-AN-C anchor into a Ceiling Vertical Hanger Mount Plate (part# OPTS-P02)
 • If the drop is greater than 12”, also attach a Support Bracket (part# OPTS-J02-SB) from the drop (part# OPTS-J02) to the ceiling.

Notes:
• A laser level is very useful when laying out locations for the hard ceiling mount plates.
• The ceiling mount should be 6” away from the wall and then installed every 24”.
• In order to stay within code, please refer to the Appendix on page 23 for detailed anchor installation instructions and building code information.
• If this installation is in California and you are using drops, the maximum drop distance allowed is 24”.
• ONCE COMPLETE, PLEASE GO TO PAGE 14.
INSTALLING INTO A WALL/SOFFIT

Directions:
1. Attach a Wall Mounting Plate (part# OPTS-Q02) to the wall using 2 pieces of OPTS-S802-W anchors.
2. After the Track and Hanger Connector (part# OPTS-E02) has been inserted into the back of the track, slide it on to the Wall Mounting Plate and secure it with an OPTS-S102 screw.

Notes:
- The anchors should be installed using a very low torque setting on your drill or with an ordinary Phillips screwdriver. DO NOT OVER-TORQUE SCREWS.
- A laser level is very useful when laying out locations for the wall mount plates.
- The wall mount should be installed every 24".
Directions:
1. Insert the Hanger (part# OPTS-G02) into the appropriate ceiling mount piece (dependent on ceiling type) and secure with an OPTS-S102 screw.

Notes:
- Once all the Hangers have been installed, go back and insert the other ends into the Hanger & Track Connectors (part# OPTS-E02) installed on page 16. This is secured using an OPTS-S102 screw.
- The first hanger assembly (OPTS-G02) should be 6” away from the wall and then installed every 24”.
CONNECTING THE TRACK CONNECTOR

Directions:
1. Join together two pieces of track by sliding the Track Connector (part# OPTS-F02) into each adjoining end of track.
2. Make sure the piece is all the way in and snug. You may need to use a rubber mallet to achieve this.
3. Once the piece is in place, secure with 2 pieces of OPTS-S102.

Note:
• During the installation process, it may become necessary to cut the track in order to get a perfect fit. Be sure to take care in cutting the end of the track that does not join to another track. Manufactured/finished ends of the track are ideal for joining with the Connector piece. Cut ends may be capped off at the end of the track by using an End Cap (part# OPTS-M02) or End Wall Plate (part# OPTS-C02). Please see the below example for further clarification:

Example:
Connecting the Hanger & Track Connector

Directions:
1. Make sure the track is right side up. This will be evident by noting a smooth rounded top and a lip at the bottom.
2. Place the end of the Hanger & Track Connector (part# OPTS-E02) into the groove on the back side of the track and turn clockwise 1/4 turn. This will lock the piece into place.
3. If you need to reposition, simply reverse the process.
4. The other end of this piece connects to the hanger (part# OPTS-G02) that should be suspended from the ceiling (done earlier). This is secured using an OPTS-S102 screw.

Note:
- The Hanger & Track Connector should only be turned in a clockwise direction.
To connect and End Cap (part# OPTS-M02), simply slide into place and secure with a self-tapping screw (part# OPTS-S302)
Connecting the End Wall Plate

Directions:
1. To connect an End Wall Plate (part# OPTS-C02), simply slide into place and secure with a self-tapping screw (part# OPTS-S302).
2. Use 4 pieces of OPTS-S802-W anchors to secure the piece to the wall.

Notes:
- Attaching this piece should be the last step in your installation.
- The first hanger assembly (OPTS-G02) should be 6” away from the wall and then installed every 24”.
INSTALLING RAIL DROPS

Directions:
1. Insert an Extensible Tube (part# OPTS-J02) into the Ceiling Vertical Hanger Mount Plate (part# OPTS-P02). You may need a rubber mallet to completely insert the tube. This should be done before you attach the mount plate to the ceiling. Also be sure to insert the cut end into the plate (or the end that does not have a hole).
2. Secure with an OPTS-S302 screw.
3. Insert the other end of the tube into a Tube and Hanger Connector (part# OPTS-D02) making sure to align the holes.
4. Insert a Hanger (part# OPTS-G02) and secure with an OPTS-S302 screw.
5. If the drop is greater than 12”, also attach a support bracket (part# OPTS-J02-5B) from the drop (part# OPTS-J02) to the ceiling.

Notes:
• Our Extensible Tubes are used to drop the rail to a specific height. These come in 2’ and 4’ sizes and may need to be cut to size in the field before installation.
• The Mount Plate is designed to taper so that once the tube has been completely inserted, it will not flex. For instructions on installing the Ceiling Vertical Hanger Mount Plate (part# OPTS-P02) into the ceiling, please refer to the appropriate ceiling page in this manual.
• The ceiling mount should be 6” away from the wall and then installed every 24”.
• If this installation is in California and you are using drops, the maximum drop distance allowed is 20” when installed into plywood substrate, and 24” into other materials.
INSTALLING CEILING BLOCKING

Directions:
1. Attach the round Swivel on a Hanger (part# OPTS-G02) and secure with an 11mm screw.
2. Clip a left and right Cover to the round Swivel.
3. Attach the left and right clips to the Cover and around the ACT grid. Then secure with a 6.2mm and a 27mm screw.

Note:
- The ceiling mount should be 6” away from the wall and then installed every 24”.
SURFACE MOUNTED TRACKS

ACOUSTICAL TILE CEILING

RECESSED TILE CEILING

WALL MOUNTED TRACK
3.3.5 KWIK HUS-EZ (KH-EZ) Carbon Steel Screw Anchor

3.3.5.1 Product Description

Hilti KWIK HUS-EZ (KH-EZ) anchors are comprised of a body with hex washer head. The anchor is manufactured from carbon steel and is heat treated. It has a minimum 0.0003 inch (8 μm) zinc coating in accordance with DIN EN ISO 4042. The KWIK HUS-EZ (KH-EZ) system is available in a variety of lengths with diameters of 1/4 inch, 3/8 inch, 1/2 inch, 5/8 inch and 3/4 inch (6.4mm, 9.5mm, 12.7mm, 15.9mm and 19.1mm). The hex head is larger than the diameter of the anchor and is formed with serrations on the underside. The anchor body is formed with threads running most of the length of the anchor body. The anchor is installed in a predrilled hole with a powered impact wrench or torque wrench. The anchor threads cut into the concrete on the sides of the hole and interlock with the base material during installation. Applicable base materials include normal-weight concrete, structural lightweight concrete, lightweight concrete over metal deck, and grout filled concrete masonry.

Guide Specifications

Screw anchors shall be KWIK HUS-EZ as supplied by Hilti, Inc. Anchors shall be manufactured from heat treated carbon steel material, zinc plated to a minimum thickness of 8μm. Anchor head shall display name of manufacturer, product name, diameter and length. Anchors shall be installed using a drill bit of same nominal diameter as anchor.

Product Features

- Suitable for cracked and uncracked normal weight and lightweight concrete, and grout filled concrete masonry.
- Suitable for seismic and nonseismic loads.
- Quick and easy to install.

3.3.5.2 Material Specifications

Hilti KWIK HUS-EZ anchors are manufactured from carbon steel. The anchors are bright zinc plated to a minimum thickness of 8μm.

3.3.5.3 Technical Data

The data contained in Tables 1-5 of this section have been evaluated in accordance with AC 193. For more detail, see ICC-ES ESR 3027.

Figure 1 — KWIK HUS-EZ anchor installation details
Table 1 — KWIK HUS-EZ Specification Table1,2,3

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Symbol</th>
<th>Units</th>
<th>Nominal Anchor Diameter (inches)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>1/4</td>
</tr>
<tr>
<td>Nominal Diameter</td>
<td>d_n</td>
<td>in.</td>
<td>1/4</td>
</tr>
<tr>
<td>Drill Bit Diameter</td>
<td>d_{db}</td>
<td>in.</td>
<td>1/4</td>
</tr>
<tr>
<td>Baseplate Clearance Hole Diameter</td>
<td>d_b</td>
<td>in.</td>
<td>3/8</td>
</tr>
<tr>
<td>Installation Torque4</td>
<td>T_{inst}</td>
<td>ft-lbf</td>
<td>18</td>
</tr>
<tr>
<td>Impact Wrench Torque Rating5</td>
<td>T_{impact}</td>
<td>ft-lbf</td>
<td>114</td>
</tr>
<tr>
<td>Nominal Embedment depth</td>
<td>h_{nom}</td>
<td>in.</td>
<td>1-5/8</td>
</tr>
<tr>
<td>Effective Embedment Depth</td>
<td>h_{ef}</td>
<td>in.</td>
<td>1.18</td>
</tr>
<tr>
<td>Minimum Hole Depth</td>
<td>h_m</td>
<td>in.</td>
<td>2</td>
</tr>
<tr>
<td>Critical Edge Distance2</td>
<td>c_{crit}</td>
<td>in.</td>
<td>2.00</td>
</tr>
<tr>
<td>Minimum Spacing at critical edge</td>
<td>$s_{min, crit}$</td>
<td>in.</td>
<td>1.50</td>
</tr>
<tr>
<td>Minimum Edge Distance2</td>
<td>c_{min}</td>
<td>in.</td>
<td>1.50</td>
</tr>
<tr>
<td>Minimum Spacing at Minimum Edge Distance</td>
<td>s_{min}</td>
<td>in.</td>
<td>3</td>
</tr>
<tr>
<td>Minimum Concrete Thickness</td>
<td>h_{con}</td>
<td>in.</td>
<td>3.25</td>
</tr>
<tr>
<td>Wrench socket size</td>
<td>-</td>
<td>in.</td>
<td>7/16</td>
</tr>
<tr>
<td>Head height</td>
<td>-</td>
<td>in.</td>
<td>0.24</td>
</tr>
<tr>
<td>Effective tensile stress area</td>
<td>A_{eq}</td>
<td>in.2</td>
<td>0.045</td>
</tr>
<tr>
<td>Minimum specified ultimate strength</td>
<td>f_{ult}</td>
<td>psi</td>
<td>134,000</td>
</tr>
</tbody>
</table>

For SI: 1 inch = 25.4 mm, 1 ft-lbf = 1.356 N·m, 1 psi = 6.89 Pa, 1 in2 = 645 mm2, 1 lb/in = 0.175 N/mm

1 The data presented in this table is to be used in conjunction with the design criteria of ACI 318 Appendix D.

2 For installations through the soffit of steel deck into concrete (see Figure 2) anchors installed in the lower flute may be installed with a maximum 1 inch offset in either direction from the center of the flute.

3 Because of variability in measurement procedures, the published torque of an impact tool may not correlate properly with the above setting torques. Over-torquing can damage the anchor and/or reduce its holding capacity.

4 T_{inst} applies to installations using a calibrated torque wrench.
3.3.5 KWIK HUS-EZ (KH-EZ) Carbon Steel Screw Anchor

Table 2 — KWIK HUS EZ (KH EZ) Tension Strength Design Information

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Symbol</th>
<th>Units</th>
<th>Nominal Anchor Diameter (inches)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>1/4</td>
</tr>
<tr>
<td>Anchor Category 1.2 or 3</td>
<td></td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Nominal Embedment Depth</td>
<td>h_{nom}</td>
<td>in.</td>
<td>1-5/8</td>
</tr>
<tr>
<td>Steel Strength in Tension (ACI 318 D 5.1)a</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tension Resistance of Steel</td>
<td>N_{s}</td>
<td>lb.</td>
<td>6070</td>
</tr>
<tr>
<td>Reduction Factor for Steel Strengthb</td>
<td>Φ_{ns}</td>
<td>-</td>
<td>0.65</td>
</tr>
<tr>
<td>Concrete Breakout Strength in Tension (ACI 318 D.5.2)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Effective Embedment Depth</td>
<td>h_{el}</td>
<td>in.</td>
<td>1.18</td>
</tr>
<tr>
<td>Critical Edge Distance</td>
<td>c_{ec}</td>
<td>in.</td>
<td>2.00</td>
</tr>
<tr>
<td>Effectiveness Factor — Uncracked Concrete</td>
<td>k_{uncr}</td>
<td>-</td>
<td>24</td>
</tr>
<tr>
<td>Effectiveness Factor — Cracked Concrete</td>
<td>k_{cr}</td>
<td>-</td>
<td>17</td>
</tr>
<tr>
<td>Modification factor for cracked and uncracked concretec</td>
<td>ψ_{cr}</td>
<td>-</td>
<td>1.0</td>
</tr>
<tr>
<td>Reduction Factor for Concrete Breakout Strengthd</td>
<td>Φ_{cb}</td>
<td>-</td>
<td>0.65 (Condition B)</td>
</tr>
<tr>
<td>Pullout Strength in Tension (Non Seismic Applications) (ACI 318 D.5.3)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Characteristic pullout strength, uncracked concrete (2,500 psi)</td>
<td>$N_{s,uncr}$</td>
<td>lb.</td>
<td>1305e</td>
</tr>
<tr>
<td>Characteristic pullout strength, cracked concrete (2500 psi)</td>
<td>$N_{s,cr}$</td>
<td>lb.</td>
<td>632e</td>
</tr>
<tr>
<td>Reduction factor for pullout strengthe</td>
<td>Φ_{p}</td>
<td>-</td>
<td>0.65 (Condition B)</td>
</tr>
<tr>
<td>Pullout Strength in Tension (Seismic Applications) (ACI 318 D.5.3)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Characteristic Pullout Strength, Seismic (2,500 psi)</td>
<td>N_{s}</td>
<td>lb.</td>
<td>632f</td>
</tr>
<tr>
<td>Reduction Factor for Pullout Strengthg (2,500 psi)</td>
<td>Φ_{eq}</td>
<td>-</td>
<td>0.65 (Condition B)</td>
</tr>
<tr>
<td>Axial Stiffness in Service Load Range</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Uncracked Concrete</td>
<td>β_{uncr}</td>
<td>lb/in.</td>
<td>760,000</td>
</tr>
<tr>
<td>Cracked Concrete</td>
<td>β_{cr}</td>
<td></td>
<td>293,000</td>
</tr>
</tbody>
</table>

For SI: 1 inch = 25.4 mm, 1 ft-lbf = 1.356 N-m, 1 psi = 6.89 Pa, 1 in2 = 645 mm2, 1 lb/in = 0.175 N/mm

1 The data in this table is intended for use with the design provisions of ACI 318 Appendix D; for anchors resisting seismic load combinations the additional requirements of D.3.3 shall apply.

2 Values of Φ in this table apply when the load combinations for ACI 318 Section 9.2, IBC Section 1605.2.1 are used and the requirements of ACI 318 D.4.4 for Condition B are met. If the load combinations of ACI 318 Appendix C are used, the appropriate value of Φ must be used. For situations where reinforcement meets the requirements of Condition A, ACI 318 Section D.4.4 provides the appropriate Φ factor.

3 N/A denotes that pullout resistance does not govern and does not need to be considered.

4 The characteristic pullout resistance for concrete compressive strengths greater than 2500 psi may be increased by multiplying the value in the table by $(f'_{c})^{0.5}$ for psi or $(f'_{c})^{0.25}$ for MPa.

5 For sand-lightweight concrete, multiply concrete capacity values and pullout values by 0.60.
Table 3 — KWIK HUS EZ (KH EZ) Shear Strength Design Information

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Symbol</th>
<th>Units</th>
<th>Nominal Anchor Diameter (inches)</th>
<th>1/4</th>
<th>3/8</th>
<th>1/2</th>
<th>5/8</th>
<th>3/4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anchor Category</td>
<td></td>
<td></td>
<td></td>
<td>1,2</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Embedment Depth</td>
<td>(h_{\text{hos}})</td>
<td>in.</td>
<td>1-5/8</td>
<td>2-1/2</td>
<td>1-5/8</td>
<td>2-1/2</td>
<td>3-1/4</td>
<td>2-1/4</td>
</tr>
<tr>
<td>Steel Strength in Shear (ACI 318 D 6.1)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Shear Resistance of Steel — Static</td>
<td>(V_{\text{sa}})</td>
<td>lb.</td>
<td>1548</td>
<td>4057</td>
<td>5185</td>
<td>9245</td>
<td>11221</td>
<td>16662</td>
</tr>
<tr>
<td>Shear Resistance of Steel — Seismic</td>
<td>(V_{\text{se}})</td>
<td>lb.</td>
<td>1393</td>
<td>2524</td>
<td>3111</td>
<td>5547</td>
<td>6733</td>
<td>11556</td>
</tr>
<tr>
<td>Reduction Factor for Steel Strength</td>
<td>(\Phi_{\text{sa}})</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.80</td>
</tr>
<tr>
<td>Nominal Diameter</td>
<td>(d_{\text{n}})</td>
<td>in.</td>
<td>0.250</td>
<td>0.375</td>
<td>0.500</td>
<td>0.625</td>
<td>0.750</td>
<td></td>
</tr>
<tr>
<td>Load Bearing Length of Anchor</td>
<td>(l_{\text{s}})</td>
<td>in.</td>
<td>1.18</td>
<td>1.92</td>
<td>1.11</td>
<td>1.86</td>
<td>2.50</td>
<td>2.16</td>
</tr>
<tr>
<td>Reduction Factor for Concrete Breakout</td>
<td>(\Phi_{\text{sb}})</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Concrete Pryout Strength</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Coefficient for Pryout Strength</td>
<td>(k_{\text{sp}})</td>
<td></td>
<td>1.0</td>
<td></td>
<td>2.0</td>
<td></td>
<td>1.0</td>
<td></td>
</tr>
<tr>
<td>Reduction Factor for Pryout Strength</td>
<td>(\Phi_{\text{sp}})</td>
<td></td>
<td></td>
<td></td>
<td>0.70</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

For SI: 1 inch = 25.4 mm, 1 ft-lbf = 1.356 N-m, 1 psi = 6.89 Pa, 1 in² = 645 mm², 1 lb/in = 0.175 N/mm

1. The data in this table is intended for use with the design provisions of ACI 318 Appendix D
2. Values of \(\Phi \) in this table apply when the load combinations for ACI 318 Section 9.2, IBC Section 1605.2.1 are used and the requirements of ACI 318 D.4.4 for Condition B are met. If the load combinations of ACI 318 Appendix C are used, the appropriate value of \(\Phi \) must be used. For situations where reinforcement meets the requirements of Condition A, ACI 318 D.4.4 provides the appropriate \(\Phi \) factor.
3. Reported values for steel strength in shear are based on test results per ACI 355.2, Section 9.4 and must be used for design in lieu of calculated results using equation D-20 of ACI 318.
4. The KWIK HUS EZ (KH EZ) is considered a brittle steel element as defined by ACI 318 D.1.
5. For sand-lightweight concrete, multiply concrete breakout and concrete pryout values by 0.60.
3.3.5 KWIK HUS-EZ (KH-EZ) Carbon Steel Screw Anchor

Table 4 – KWIK HUS-EZ (KH-EZ) Tension and Shear Design Data for Installation in the Underside of Concrete-Filled Profile Steel Deck Assemblies

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Symbol</th>
<th>Units</th>
<th>Lower Flute Anchor Diameter</th>
<th>Upper Flute</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>1/4</td>
<td>3/8</td>
</tr>
<tr>
<td>Embedment</td>
<td>(h_{om})</td>
<td>in.</td>
<td>1-5/8</td>
<td>2-1/2</td>
</tr>
<tr>
<td>Minimum Hole Depth</td>
<td>(h_{m})</td>
<td>in.</td>
<td>2</td>
<td>2-7/8</td>
</tr>
<tr>
<td>Effective Embedment Depth</td>
<td>(h_{ef})</td>
<td>in.</td>
<td>1.18</td>
<td>1.92</td>
</tr>
<tr>
<td>Pullout Resistance, (uncracked concrete)</td>
<td>(N_{p,uncr,concrete})</td>
<td>lb.</td>
<td>1210</td>
<td>1875</td>
</tr>
<tr>
<td>Pullout Resistance, (cracked concrete and seismic loads)</td>
<td>(N_{p,cr,concrete})</td>
<td>lb.</td>
<td>860</td>
<td>1330</td>
</tr>
<tr>
<td>Steel Strength in Shear</td>
<td>(V_{sb,deck})</td>
<td>lb.</td>
<td>1205</td>
<td>2210</td>
</tr>
<tr>
<td>Steel Strength in Seismic</td>
<td>(V_{sb,deck,seismic})</td>
<td>lb.</td>
<td>1080</td>
<td>1988</td>
</tr>
</tbody>
</table>

1. Installation must comply with Figure 2.
2. The values in this table are derived in accordance with ACI 318 Appendix D, Section D.5.3.2.
3. The values for \(\phi_p\) in tension can be found in Table 2 of this report and the values for \(\phi_s\) in shear can be found in Table 3.
4. For installations through the soffit of steel deck into concrete (see Figure 2) anchors installed in the lower flute shall be installed with a maximum 1 inch offset in either direction from the centerline of the flute.
5. The characteristic pullout resistance for concrete compressive strengths greater than 3,000 psi may be increased by multiplying the value in the table by \((f_{c}^\prime/3,000)^{0.2}\) for psi or \((f_{c}^\prime/20.7)^{0.2}\) for MPa.

Figure 2 – Installation of KWIK HUS-EZ (KH-EZ) in Soffit of Concrete Over Steel Deck Floor and Roof Assemblies

1. Anchors may be placed in the upper or lower flute of the steel deck profile provided the minimum concrete cover above the drilled hole is satisfied. Anchors in the lower flute may be installed with a maximum 1-inch offset in either direction from the center of the flute. The offset distance may be increased proportionally for profiles with lower flute widths greater than those shown provided the minimum lower flute edge distance is also satisfied.
Table 5 – KWIH US-EZ (KH-EZ) Allowable Stress Design Values for Illustrative Purposes

<table>
<thead>
<tr>
<th>Nominal Anchor Diameter [in.]</th>
<th>Embedment Depth, (h_{\text{em}}) [in.]</th>
<th>Effective Embedment Depth, (h_{\text{em}}) [in.]</th>
<th>Allowable Tension Load ([\text{lbf}])</th>
<th>Allowable Shear Load ([\text{lbf}])</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/4</td>
<td>1.5/8</td>
<td>1.18</td>
<td>589</td>
<td>645</td>
</tr>
<tr>
<td></td>
<td>2-1/2</td>
<td>1.92</td>
<td>1060</td>
<td>645</td>
</tr>
<tr>
<td>3/8</td>
<td>1-5/8</td>
<td>1.11</td>
<td>633</td>
<td>682</td>
</tr>
<tr>
<td></td>
<td>2-1/2</td>
<td>1.86</td>
<td>1374</td>
<td>1480</td>
</tr>
<tr>
<td></td>
<td>3-1/4</td>
<td>2.50</td>
<td>2141</td>
<td>2160</td>
</tr>
<tr>
<td>1/2</td>
<td>2-1/4</td>
<td>1.52</td>
<td>1142</td>
<td>1230</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>2.16</td>
<td>1934</td>
<td>2083</td>
</tr>
<tr>
<td></td>
<td>4-1/4</td>
<td>3.22</td>
<td>3521</td>
<td>3852</td>
</tr>
<tr>
<td>5/8</td>
<td>3-1/4</td>
<td>2.39</td>
<td>2252</td>
<td>2425</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>3.88</td>
<td>4657</td>
<td>4675</td>
</tr>
<tr>
<td>3/4</td>
<td>4</td>
<td>2.92</td>
<td>3041</td>
<td>6549</td>
</tr>
<tr>
<td></td>
<td>6-1/4</td>
<td>4.84</td>
<td>6489</td>
<td>6943</td>
</tr>
</tbody>
</table>

For SI: 1 inch = 25.4 mm, 1 lbf = 4.45 N.

1. Single anchor with static tension or shear load only.
2. Concrete determined to remain uncracked for the life of the anchorage.
3. Load combinations are taken from ACI 318 Section 9.2 (no seismic loading).
4. 40% dead load and 60% live load, controlling load combination 1.2D + 1.6L.
5. Calculation of weighted average for conversion factor \(\alpha = 1.2(0.4) + 1.6(0.6) = 1.44 \).
6. \(f_{c'} = 2,500 \text{ psi} \) (normal weight concrete).
7. \(c_{\text{em}} = c_{\text{em}} \geq c_{\text{em}} \), see Table 1.
8. \(h \geq h_{\text{em}} \), see Table 1.
9. Values are for Condition B where supplementary reinforcement in accordance with ACI 318 D.4.4 is not provided.
10. Allowable Tension Load = factored Load (Lessor of \(N_p \) or Concrete Breakout from Table 2) ÷ 1.44
11. Allowable Shear Load = factored Load (Lessor of \(V_{\text{em}} \) or Concrete Pryout from Table 3) ÷ 1.44
12. Values are for single anchors installed without influence of base material edge distance or adjacent anchors.
3.3.5 KWIK HUS-EZ (KH-EZ) Carbon Steel Screw Anchor

Table 6 – Allowable Tension Loads for KWIK HUS-EZ Installed in Grout-Filled Masonry Walls (lb)\(^1,2,7,8\)

<table>
<thead>
<tr>
<th>Anchor Diameter (inches)</th>
<th>Embedment (inches)</th>
<th>Loads @ (C_{av}) and (S_{av})</th>
<th>Spacing</th>
<th>Edge Distance</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Critical - (S_{av}) (inches)(^6)</td>
<td>Minimum - (S_{min}) (inches)(^6)</td>
<td>Load Reduction Factor at (S_{min}) (^6)</td>
</tr>
<tr>
<td>1/4</td>
<td>1 5/8</td>
<td>530</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>2 1/2</td>
<td>910</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>3/8</td>
<td>1 5/8</td>
<td>535</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>2 1/2</td>
<td>895</td>
<td>6</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>3 1/4</td>
<td>1210</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>1/2</td>
<td>2 1/4</td>
<td>710</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>1110</td>
<td>8</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>4 1/4</td>
<td>1515</td>
<td>10</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>1735</td>
<td>10</td>
<td>4</td>
</tr>
<tr>
<td>5/8</td>
<td>3 1/4</td>
<td>1155</td>
<td>10</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>1735</td>
<td>10</td>
<td>4</td>
</tr>
<tr>
<td>3/4</td>
<td>4</td>
<td>1650</td>
<td>12</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>6 1/4</td>
<td>2035</td>
<td>12</td>
<td>4</td>
</tr>
</tbody>
</table>

Table 7 – Allowable Shear Loads for KWIK HUS-EZ Installed in Grout-Filled Masonry Walls (lb)\(^1,2,7,8\)

<table>
<thead>
<tr>
<th>Anchor Diameter (inches)</th>
<th>Embedment (inches)</th>
<th>Load at (C_{av}) and (S_{av})</th>
<th>Spacing</th>
<th>Edge Distance</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Critical - (S_{av}) (inches)(^6)</td>
<td>Minimum - (S_{min}) (inches)(^6)</td>
<td>Load Reduction Factor at (S_{min}) (^6)</td>
</tr>
<tr>
<td>1/4</td>
<td>1 5/8</td>
<td>675</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>2 1/2</td>
<td>840</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>3/8</td>
<td>1 5/8</td>
<td>1140</td>
<td>6</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>2 1/2</td>
<td>1165</td>
<td>8</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>3 1/4</td>
<td>1190</td>
<td>8</td>
<td>4</td>
</tr>
<tr>
<td>1/2</td>
<td>2 1/4</td>
<td>1845</td>
<td>8</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>2055</td>
<td>8</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>4 1/4</td>
<td>2745</td>
<td>8</td>
<td>4</td>
</tr>
<tr>
<td>5/8</td>
<td>3 1/4</td>
<td>3040</td>
<td>10</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>3485</td>
<td>10</td>
<td>4</td>
</tr>
<tr>
<td>3/4</td>
<td>4</td>
<td>3040</td>
<td>10</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>6 1/4</td>
<td>3485</td>
<td>10</td>
<td>4</td>
</tr>
</tbody>
</table>

1. All values are for anchors installed in fully grouted masonry with minimum masonry prism strength of 1500psi. Concrete masonry units shall be light-weight or normal-weight.
2. Anchors may not be installed within one inch in any direction of a vertical joint.
3. Embedment depth is measured from the outside face of the concrete masonry embedment.
4. \(S_{av}\) is anchor spacing where full load values in the Table may be used. \(S_{min}\) is the minimum anchor spacing for which values are available and installation is recommended. Spacing is measured from the center of one anchor to the center of an adjacent anchor.
5. \(C_{av}\) is the edge distance where full load values in the table may be used. \(C_{min}\) is the minimum edge distance for which values are available and installation is recommended. Edge distance is measured from the center of the anchor to the closest edge.
6. Load reduction factors are multiplicative, both spacing and edge distance load reduction factors must be considered.
7. Load values for anchors installed at less than \(C_{av}\) or \(S_{av}\) must be multiplied by the appropriate load reduction factor based on actual edge distance (C) or spacing (S).
8. Linear interpolation of load values between minimum spacing (\(S_{min}\)) and critical spacing (\(S_{av}\)) and between minimum edge distance (\(C_{min}\)) and critical edge distance (\(C_{av}\)) is permitted.
9. For combined loading: For 1/4" diameter - \(\frac{T_{applied}}{T_{allowable}} + \frac{V_{applied}}{V_{allowable}} \leq 1\) For 3/8" - 3/4" diameter - \(\left(\frac{T_{applied}}{T_{allowable}}\right)^{1.2} + \left(\frac{V_{applied}}{V_{allowable}}\right)^{1.2} \leq 1\)

Table 8 – KWIK HUS-EZ Allowable Loads Installed In Top of Grout-Filled Concrete Masonry Construction (lb)

<table>
<thead>
<tr>
<th>Anchor Diameter (inches)</th>
<th>Minimum Embedment Depth (inches)</th>
<th>Minimum Edge Distance (inches)</th>
<th>Minimum Spacing (inches)</th>
<th>Minimum End Distance (inches)</th>
<th>Tension</th>
<th>Shear</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/2</td>
<td>4 1/4</td>
<td>1 3/4</td>
<td>8</td>
<td>4</td>
<td>680</td>
<td>305</td>
</tr>
<tr>
<td>5/8</td>
<td>5</td>
<td>1 3/4</td>
<td>10</td>
<td>5</td>
<td>1310</td>
<td>305</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1110</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1165</td>
</tr>
</tbody>
</table>

1. All values are for anchors installed in fully grouted masonry with minimum masonry prism strength of 1500psi. Concrete masonry units shall be light-weight or normal-weight.

2. Embedment depth is measured from the top of the masonry construction.

3. For combined loading: For 1/4” diameter - $\frac{T_{applied}}{T_{allowable}} + \frac{V_{applied}}{V_{allowable}} \leq 1$ For 3/8" - 3/4” diameter - $\left(\frac{T_{applied}}{T_{allowable}}\right)^{1/2} + \left(\frac{V_{applied}}{V_{allowable}}\right)^{1/2} \leq 1$

3.3.5.4 Installation Instructions

Drill holes in base material using carbide-tipped masonry drill bits complying with ANSI B212.15-1994. The nominal drill bit diameter must be equal to that of the anchor. The minimum drilled hole depth is given in Table 1. Prior to installation, dust and debris must be removed from the drilled hole using a hand pump, compressed air or a vacuum. The anchor must be installed into the predrilled hole using a powered impact wrench or installed with a torque wrench until the proper nominal embedment depth is obtained. The impact wrench torque, T_{impact} and installation torque, T_{inst} for the manual wrench must be in accordance with Table 1. The KWIK HUS-EZ (KH-EZ) may be loosened by a maximum of one turn and reinstalled with a socket wrench or powered impact wrench to facilitate fixture attachment or realignment. For member thickness and edge distance restrictions for installations into the soffit of concrete on steel deck assemblies, see Figure 2.

1. Drill hole in base material using proper diameter drill bit.
2. Clean drilled hole to remove debris.
3. Fasten anchor tightly against fastened part.
4. Install anchor using proper impact tool or torque wrench.
MAINTENANCE

(The Only Track Maintenance You will Ever Need)

Step 1:

Bend the end of a micro-fiber high-duster head at a 90 degree angle.

Step 2:

Spray the inside of curve of the high-duster head with “Pledge Revitalizing Oil”.

Step 3:

Run the high-duster along the top of the rail to clean and maintain “Quiet Glide”.

on the right track systems, inc

33